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ABSTRAC 
A technique for accurate, absolute binary measurement of

liquid level by ultrasonic means is developed; and a measurement

instrument is designed, fabricated, and evaluated. The Digital

Liquid Level Transducer differs from the conventional ultrasonic

depth indicating system in that two time encoding measurements

form the raw data to a limited purpose digital computer which cor-

rects the measurement for sound velocity, density, and tempera-

ture changes of the liquid. The second time measurement over a

known distance is used to eliminate the velocity of sound from the

equation which defines the level of the liquid. The concept is also

shown to eliminate the periodic calibration of the counting frequen-

cy of the time encoding.

The instrument, which was logically implemented on an ex-

isting pilot-plant, has a resolution of + 0.1% for its 2 ft. water

depth range over temperatures of 40 to 100°F, and operates at a

counting frequency of 4.95 Mc. /sec. The extension of the compen-

sated measurement concept to greater depths for the same full

range resolution is discussed in detail.
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CHAPTER I

DIGITAL MEASUREMENT OF LIQUID LEVEL

Measurement and Control

Quantitative information describing the condition of a physi-

Cal system is provided solely by the measurement of its physical

properties. One or all of the measurements of pressure_ temper-

ature, composition, and quantity may be required to satisfactorily

describe a system. For control purposes, this adequate descrip-

tion is studied in order to judiciously adjust the manipulated vari-

ables such that regulation of the system according to some desired

criterion is accomplished. In short, the finesse of control of a sys-

tem or industrial process rests both on the accurate description of

the process through measurement methods and on the criterion of

control.

An example of the adverse effect of the measurement method

on the controlled system performance is any measurement method

whose speed of response is large in comparison to the rate of

change of the measured variable. 1 Such a measurement method

in a feedback control system would reduce the over-all effective-

ness of the control. A second example of this adverse effect is

the presence of some undesirable feature in the measurement

method which cannot be controlled and which produces errors in

the measurement. The Bourdon pressure indicator will provide
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an illustration. Ideally the pressure reading on the scale is lin-

early related to the pressure over a given range. Yet such an in-

dicator might change its apparent reading of the same pressure if

the ambient temperature surrounding the indicator varies over a

wide range.

At this point, the designer of the measurement and control

equipment for a given process has a number of choices.

i. He can accept the error introduced by the measurement

method. This is an obvious solution if the error intro-

duced by such inferior measurement will not adversely

affect the over-all control.

2. He can add compensation to the control algorithm in or-

der to compensate for the measurement method. This

technique usually involves the sensing of more informa-

tion about the process.

3. He can strive to improve the measurement method and

thereby maintain enough simplicity and generality in

the controller to enable its use in a number of applica-

tions.

His decision will probably be made on the bases of the control de-

sired, the availability of equipment to satisfy his need, and the

COSt.

The acquisition and the representation of quantitative infor-

mation in a digital form is an area in which the designer is faced

with the same dilemma. The high degree of accuracy and rapid



calculation capability inherent in the digital control device can be

hampered by the inaccuracy of the measurement method, by its own

time lag, and by some undesirable features in the measurement

technique. The measurement of a process liquid level and the con-

version of this information into a digital representation is such a

measurement and control problem. Measurement methods pres-

ently include float operated, pressure, and electronic gages. 2 The

first two methods involve the sensing of level by some kinematic

means, while the electronic methods incorporate measurement of

capacitance, sonar pulses, radiation, and contact and radio-fre-

quency sensing of the surface. The transformation of the measure-

ment into digital data will be considered by the kinematic and the

ultrasonic methods. To examine each of these methods is the pur-

pose of the remaining portion of this chapter. Through this exami-

nation, the background for the Digital Liquid Level Transducer will

be developed.

Sensing by Kinematic Means

The sensing of a !iq,,_ 1_ve! by kinematic means is a _m_.ethod

of measurement which involves the movement of a measuring probe.

If the level is sensed directly, such a method uses "... floats with

their associated linkages and inaccuracies,...". 3 The indirect

method might use a pressure sensitive device to convert the hydro-

static head to a linear motion which is proportional to liquid level.

The conversion of the linear motion into a digital quantity by the



use of a brush or optical encoder completes the measurement re-

quirement. Thus the physical-digital interface is bridged by some

movement altering and/or amplifying kinemat_.c system.

The advantages of such a linkage system are as follows:

1. Low cost,

2. Relative simplicity,

3. Ability to function without outside sources of power, and

4. Capability of responding to level changes and not to

changes in surface wave level.

The disadvantages of such an arrangement are apparent when

one considers the larger objective of obtaining a reliable digital

representation of the true liquid level.

i. For the digital accuracy desired, the level change re-

quired to make the kinematic linkage respond is usually

too large, and the response is too slow, Gear backlash

and the starting friction of the sliding and rolling mem-

bers cause this reduction in accuracy and response.

2. Such an arrangement requires space in and above the

tank whose liquid level is being sensed. The term cum-

bersome would adequately describe this disadvantage.

3. The delicate digital encoder must be subjected to the en-

vironment of the process being measured.

4. Changes in the liquid's specific gravity due to temperature

changes can introduce errors in the measurement.
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Sensing by Ultrasonic Means

The sensing of liquid level by ultrasonic means is the method

of measurement which makes use of the physical properties of

sound wave propagation through the Liquid. For a liquid at a given

temperature, the speed of sound through it is a fixed property.

Thus by measuring the transient time of a pulse of sound between

its initiation and its reception as a returning echo, the height of a

column of liquid can be measured. Since the signal has traversed

twice the height of the column, a division by two will yield the cor-

rect measurement. The above discussion describes the steps nec-

essary for one to compute the height of a column of liquid when 1.

the velocity of sound propagation at Z. a given temperature of the

liquid is known. The accuracy of the resulting calculation of the

height will depend upon how accurately the velocity of sound prop-

agation is known.

To obtain the level measurement in a digital form by ultra-

sonic means, a frequency is chosen such that the wave length of

the sound through the liquid corresponds to the smallest change of

height to be measured. 4 An electronic counter is then counted at

this frequency between the initial sound pulse and its returning

echo. Then one-half of the number of cycles recorded represents

a direct digital measurement of the liquid height. Figure 1 illus-

trates this measurement technique. Further this figure shows the

basic parts of any ultrasonic measuring device. These are the

signal source, the projector driver, the sound projector, amplifier,
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and display unit. A receiving transducer would be added to this

list if the sound projector were not also used as the receiving unit.

The advantages of the ultrasonic method of measurement are

as follows:

i.

.

e

The digital measurement is made directly. Thus the

need for a digital encoder is circumvented.

The need for space in and above the liquid which was re-

quired by the measurement linkage has been eliminated.

By the removal of any moving linkages, the capability for

accurate measurement has been increased.



The disadvantages of the ultrasonic method are as follows:

1. The oscillator will require periodic calibration to insure

that the frequency of counting will produce the same digi-

tal measurement for the same liquid level and tempera-

ture.

Z. A liquid temperature different from that of calibration

will produce a different digital reading for the same liq-

uid level. This objection is analogous to that found in the

Bourdon indicator discussion.

B. A basic requirement of the method "... is that the trans-

ducer have a very sharp beam angle and that it be free of

significant secondary radiation at angles removed from

its normal axis..3

4. Finally, the implication of using shorter wave lengths of

signals in order to insure greater digital accuracy re-

sults in a system which responds to surface waves.

Conclusion

Based on the preceding discussion, one can sl,_rn._mar._.zethe

desirable features of a device which is to rneasure a liquid level

and to provide a digital representation of the measurement. The

device should be

i.

2.

3.

Accurate and capable of digital read-out,

Independent of temperature changes in the liquid,

Independent of changes in the liquid's specific gravity,



4. Capable of being subjected to the environment of the pro-

cess being measured9

5. Independent of measurement techniques which contain

large time Iags,

6. Independent of measurement techniques which require

frequency calibrations,

7. Free from cumbersome kinematic linkages in or above

the liquid, and finally

8. Relatively low in cost.

The chapters which follow present the theory, design, and

operation of a device which utilizes a number of these desirable

char acte ri stic s.



CHAPTER II

COMPENSATED LIQUID LEVEL MEASUREMENT

The Digital Liquid Level Transducer is an absolute binary

measurement device which, obtains the raw liquid level information

by ultrasonic means and which processes this information in a lim-

ited purpose digital computer to correct it for errors inherent in

the ultrasonic measurement method. Thus this compensating level

measurement system corrects for the errors in level read-out

which are introduced by changes in the velocity of sound which, in

turn, result from changes in the temperature of the liquid. Or, in

other terms_ after installation, the digital transducer requires no

manual recalibration because of changes in liquid temperature.

As noted in Chapter i, both. the conventional kinematic and

ultrasonic methods possess errors in the measurement as a result

of variations in the liquid temperature. Hand calculated correc-

tions can be made by a secondary measurement to determine the

liquid's present temperature. Z Yet the complete digital acquisition

and correction is not considered. An initial solution scheme which

was considered and discarded for this thesis problem was that of

obtaining the raw digital measurement by ultrasonic means and cor-

recting the counting frequency of the device by a secondary meas-

urement of the present temperature of the liquid. The introduction

of another physical measurement--that of temperature--made this

scheme seem impractical. The measurement solution which this

9
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thesis describes avoids the need of the temperature measurement.

The theory of operation of the digital transducer, which will now be

presented, involves both digital and ultrasonic concepts.

Digital Compensation of Measurement

Equation of Operation

The objective of the digital compensation of the liquid level

measurement is to provide a true level read-out over a wide range

of liquid temperatures without the use of temperature measurement

or method of manual calibration. To achieve this, an ultrasonic

time measurement over a fixed distance is made simultaneously as

the liquid level time measurement is made. Together these two

measurements, illustrated in Figure Z, form the input data to the

di_taI calculation device.

II

II

s_lequ_du_ng_ icto r _

_ CompensatingSound Projector

i / _ /_Adjustable

_Keflection

Figure Z. Ultrasonic Measurements
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The distance traveled by each ultrasonic pulse is given by

where

Zh = v T tI

Zd -- v T t2

v T

t I

tz

(Measuring Projector) (1)

(Compensating Projector) (2)

Velocity of longitudinal wave propagation at the

liquid temperature T, ft./sec.,

Unknown height of the liquid column, ft.,

Fixed, known distance between the compensating

projector and its reflection plate, ft.,

Time interval for the ultrasonic pulse to travel

Zh, sec.,

Time interval for the compensating ultrasonic

pulse to travel Zd, sec.

By eliminating v T, the combined equations yield the general oper-

ating equation of the Digital Liquid Level Transducer, which is

t 1
h -- (3)

d t2

Physically the introduction of the compensating equation makes

each level measurement independent of the liquid temperature.

The computation which the digital device must perform is

threefold, initially the times ti a_nd tZ must be encoded and storcd

in a digital form for later use. Second, a division computation

must be performed which produces the ratio of tl/t Z. Then the

ratio must be multiplied by the distance d. The goal of the follow-

ing discussions is to explain and to show the relationships among

the various measurement parameters of the Digital Liquid Level

Transducer.
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Time Encoding

The digital encoding of the time interval is accomplished by

the use of an oscillator, a counter, and an electronic gate which

allows only the oscillation cycles which occur between the initial

pulse and its echo to be recorded in the counter. This measure-

ment method is termed "digital" because the interval encoded is

expressed as a discrete number of pulses. Since partial cycles are

not recordedp the accuracy of the encoding is limited to the time

represented by the least significant count which can be registered.

This time is the reciprocal of the count frequency_ f. An improve-

ment in time encoding accuracy can be obtained by increasing this

frequency in order to record more pulses for the encoding of a

given interval of time.

To make a discussion of transducer accuracy independent of

a particular application_ one can discuss measurement accuracy in

terms of a ratio. Measurement accuracy is defined as a ratio of

the smallest difference between two instrument indications to which

a definite numerical value can be assigned divided by the maximum

numerical indication which the instrument possesses. Thus the

smallest significant unit of information which can be read from a

digital instrument is identical to the "smallest difference" men-

tioned above. Since for digital systems, measurements are defined

in terms of quanta or counts, the time encoding measurement accuo_

racy is specified by
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where

EA = Least Count 100% (4)
Total Count

EA = Encoding measurement accuracy, %,

Least Count = Smallest change in the time encoding
measurement to which a definite numer-

ical value can be assigned, fractions of
quanta, and

Total Count = qmax = Maximum number of whole counts

or quanta which define the maximum h
which is to be measured, quanta.

Over-all Transducer Accuracy

The same word definition of measurement accuracy can be

applied to the over-all accuracy of the transducer system as

(/kh.)mi n
SA= ,-

hmax
lOO% (5)

where SA = System measurement accuracy, %,

(_h)mi n = Smallest change in the height, h, to which
a definite numerical value can be assigned,
and

h

max
= Maximum depth which the transducer system

can measure.

One will note that no units have been specified for ( _._nlmin

hma x. This is explained by noting that the SA is dependent only on

the ratio of the sizes of the two quantities and not on their units.

Once the SA and hma x are specified, the necessary (_h)mi n is de-

termined. The digital quanta and the physical measurement of the

same variable are related by a constant, K. Thus Equation 5 can

be expressed as



where

SA

qmax

14

_hmin, ft.

= h .... ft.r_
max,

100%

K (Ah ft.}
min,

K (hmaxft.)

/kqmin 'quanta

qm ax, quanta

100%

loo% (6)

- Resultant quantization, quanta/ft. ,

One quantum, the smallest change in the

height, h, which will be digitally recognized

in the final answer, and

Total Count = Maximum number of whole

counts which define the maximum h which is

to be measured, quanta°

A general relationship between the encoding and the system

measurement accuracies is given by

where

EA =!I/C (SA) (7)

C = Accuracy coefficient resulting from requirements

;of factors entering into a numerical calculation.

The accuracy constant C which relates the encoding and the system

accuracies is determined by the accuracies of the factors in the

operating equation of the transducer.

Computational Accuracies

The accuracy of the quotient of tl/t 2 is related to the accura-

cy of the factors t 1 and t 2 by the following:

"The product (or quotient} of numbers is accurate at most

to the number of significant figures contained in the least
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accurate factor. The least accurate factor is the number

entering into the computation which has the least number of

significant figures..5

This statement defines the minimum number of significant figures

which each factor must contain for the resultant quotient, tl/tz,

to have the desired number of significant figures. Also the mini-

mum number of significant figures in each factor for the multipli-

cation of d (tl/tZ) must be at least equal to the desired number of

significant figures in the product, h. in both the multiplication and

division operations, it would be more realistic to require that each

factor entering into the computation be k times more accurate than

the accuracy of the result.

where

(i/k)(sr) = sf (s)

S - Size of the smallest unit of measure in the result-
r

ant,

Sf i. Size of the smallest unit of measure in the least
accurate factor, and

k = Encoding accuracy factor, ratio of the size of the
smallest unit of measure in the resultant to that

in the least accurate factor.

This statement will be used as a guide for each of the factors enter_

ing into the calculation.

The required accuracies of each of the factors in the opera-

ting equation of the DigRal Liquid Level Transducer can now be ex-

pressed in terms of the required size of the smallest unit of rheas=

ure in the resultant, h. For the multiplication h = (d) (tl/tZ) , the
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factors d and tl/t z must have their smallest units of measurement

k times smaller than those of h. Further, for the division opera-

tion tl/tZ, each of these time factors must have its smallest unit of

measure k times smaller than that in the resultant tl/t 2. Thus each

time must have its smallest unit of measure k 2 times smaller than

the smallest unit in h. The accuracy coefficient C in Equation 7 is

C = k 2, and the encoding measurement accuracy is given by

EA _ SA (9)
k z

This statement relates the encoding measurement accuracy to the

system measurement accuracy by the square of the ratio of the size

of the smallest unit of measure in a resultant calculation to the cor-

responding unit of the least accurate factor entering into the calcu-

lation. The k 2 term appears, since two calculations have been used

to transform the time encoding data into the final compensated

height, h.

Multiplication Without Calculation

in the preceding discussions, nothing has been mentioned

about the initial selection of the fixed, measured distance d. In

truth, the distance d can be anything one desires; yet by a judi-

cious selection of this distance, one can simplify the calculation

operations. The decimal number system will provide an example.

Multiplication by a multiplier such as 100 is quickly accom-

plished by shifting the decimal point in the multiplicand to the right
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the number of places equal to the number of zeros in the multiplier.

Division by such a number is equally easy, since the decimal point

is shifted to the left according to the number of zeros in the divisor.

Therefore, without formal calculation, one can multiply by such a

number by shifting the decimal point.

The application of this technique to the digital transducer is

illustrated by the following. Suppose that the time measurements

of t 1 and tZ are recorded as

tI = 856, 6 }_seconds, and

tZ = 115.3 _seconds.

By following the instructions specified by Equation 3, the ratio of

tl/t 2 is determined in the computer as 7.42. Now if d is defined

to be 100 quanta, the final result, h_ is 742 quanta; and the second

calculation, namely (d} (tl/tz) , has been avoided.

Based on this desirable specification of d, the number of ex-

plicit calculations has been reduced to one. The accuracy coeffi-

cient, C, is equal to k, and Equation 7 becomes

SA
EA = T (10)

if and only if d is specified as (1000... 0. )r in some desirable num-

ber system whose base is r.

In terms of the quantities in Equations 4 and 6, Equation 10

becomes

Least Count = (l/k) Aqmin (11)
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Synchronization of the Oscillator Frequency

Equation 3 contains a subtle implementation situation which

will now be explored. The resultant number of quanta, which is

encoded during a time measurement, will depend on the synchro-

nism or lack of it between the counting pulses from the oscillator

and the start signal.

lied by Equation 6.

chronous cases.

This, in turn, could affect the accuracy speci=

Figure 3 presents the synchronous and nonsyn-

Counting
Frequency

Start

Signal

Count

Total = 7

Start

Signal

Count

Total - 8

7.99 Quanta _I

__I L-

I I I I I I I

(a)

..__J

Synchronous Case

7.99 Quanta _-I

L_.

I I I I I I

(b) Nonsynchronous Case

I I

Figure 3. Synchronization of Oscillator
Frequency and Start Signal

For illustration purposes, the exact depth in number of quanta

which is to be encoded is 7.99. Since, in the synchronous case,

the oscillator frequency is required to be in synchronism with the

start signal, repeated measurements of the same depth wiI1 yield

the same answer. For each measurement, one complete cycle
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occurs before one unit is counted into the counter. Yet each meas-

urement is in absolute error by 0.99 quanta.

If the oscillator frequency is not required to be in synchro-

nism with the start signal, then the best case occurs when the

counter counts a pulse just after the start signal has occurred. For

this measurement, the counter registers 8 counts which is 0.01

quanta greater than the exact measurement. Yet if the nonsynchro-

nous case is used in a second measurement, the counter may reg-

ister 7 or 8 depending on the relationship of the start signal and

first count pulse from the oscillator. By this presentation, one

can conclude:

1. that in both cases the maximum error in measurement

will be less than, or at most_ equal to one quanta,

2. that the advantage of the synchronous scheme is that

repeatability of the measurement is insured, and

B. that the absolute error can be reduced in both cases by

increasing the counting frequency and reducing the size

of the quanta by a proportional amount.

The preceding conclusions illustrate that for a given time

quantization as specified by the counting frequency_ the synchro-

nous case has no advantage over the nonsynchronous, since the

maximum margins of uncertainty in the answers are identical.

Transducer Equation implementation

implementation of the operating equation of the Digital Liq-
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uid Level Transducer, Equation B, will now be presented for the

purpose of describing further accuracy considerations which are in-

volved in the technique. The implementation can best be described

in terms of the measurement and calculation operations.

The measurement operation is performed by counting two

counters in the forward direction at the same measurement frequen-

cy, fm' for time durations which, are equal to t 1 and t 2. The count

totals, A and B, which are recorded in the counters, will be pro-

portional to the times t 1 and t z, respectively. Equations 1Z and 13

result.

t 1 = A (lZ)
In

fm tz = B (13)

The measurement operation is illustrated in Figure 4.

T' q
Register #1

Forward _"
C ounte r

fmtl =A
Register #3

Forward
C ounte r

I Gate Open
0 for t 1

I Inte rva 1

-0 frn Control
Logic

Gate Open

o for t 2
Interval

fmtz =B

Figure 4. Measurement Operation
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The calculation operation of the digital transducer is per-

formed by a frequency multiplying technique. 6 By this technique,

the output of an operational multiplier, whose input frequency is fc'

is a second frequency, (fc B), where B is a fixed numeric input

which is less than one. Figure 5 presents this concept.

Output

Frequency

f B
c

Operational Multiplier

I Register #4 I

Forward i _"
Counter

!1111111111
IiPulse Gates I

Input

Frequency
O

fc

Num e tic

Input B

Figure 5. Operational Multiplier

The function of the operational multiplier in the digital transducer

calculation operation is to perform the calculation tl/t Z by using

the pulse train, fc' modified by the numeric B.

Count total A, which was obtained in the measurement oper-

ation, is set into a second counter, Kegister #Z. This counter

counts backward, since for each input pulse, the count total is re-

duced by one. The input pulses to this backward counter are gen-

erated by the output (fc B) of the operational multiplier as illus-

trated in Figure 6.
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Register #1 [
Forward _"
C ounte r

Register #Z I
Backward

Counter

Zero IDetection

f B
C

Operational iMultiplier

Register #3

Close Gate When

fc

Numeric

Input B

Zero Is Detected

Input

Frequency

Figure 6. Calculation Operation

The reduction of the Register #Z contents to zero will require a

calculation time, t c. Thus the statement relating the original con-

tents, A, to the input frequency, (fc B) is

A --fc Bt (14)
C

During this same calculation time,

forward from zero at the fixed rate of f .
c

this resultant total count, R.

tc, Register #1 is counted

Equation 15 describes

R=f t
C C

(15)

By eliminating tc, Equations 14 and 15 combine to yield

R= f A
cr_

C

(16)
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Finally, A and B, which are defined by Equations 1Z and 13,

substituted into the above equation to produce

can be

(17)

Since the fixed distance, d, is a multiplier of the form (I00... O. ),

the compensated liquid height measurement, h, is expressed by

h - (d) R

fc fm tl

or h a=d fc fm tz (18)

where h - Compensated liquid level measurement, quanta,

d " Fixed distance measurement of the form

( 100. 0) quanta,• " r'

f = Frequency of the pulses used in the calculationc
operation, pulses/sec.,

fm _" Frequency of the pulses used in the measure-
ment operation, pulses/sec.,

t 1 = Time interval for the ultrasonic pulse to travel
Zh, sec., and

t Z = Time interval for the compensating ultrasonic
pulse to travel 2d: sec.

Equation 18, which expresses the calculation result of the

digital device, demonstrates the independency of the resultant

upon the frequencies of calculation and measurement. It will be

recalled that other level indicating digital devices required the

maintenance of a frequency as a calibrated measurement standard.

By the comparison of Figures 4 and 6, it will be seen that
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Register #I is utilized twice during the operation cycle. First, it

is used to record the encoding of time_ tl; then during Calculation,

it is used to record the final result, h. By time sharing Register

#1, the need for a second forward counting register has been avert-

ed.

Register Capacities

The total count requirements for Registers #I and #3 for the

time encoding of tI and t2, respectively, are determined by the pro-

duct of three factors: the maximum ultrasonic path length, 2h
max s

the resultant quantization, K, and encoding accuracy factor, k. The

count capacities of Registers #i and #3 become

Total Count Register #I = 2hma x K k

Total Count Register #3 = Zd K k

(19)

{2o)

Because Register #Z (backward counter) is to receive the encoded

time, tl, its size is also determined by Equation 19.

Ultrasonic Conside rations

The ultrasonic concepts which are involved with the analytical

development of the Digital Liquid Level Transducer are based on

the transmission equation of the longitudinal wave and on the char-

acteristics of the liquid and its echo reflection interface. Also re-

lated to the digital transducer is the concept of signal attenuation.
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Longitudinal Wave Transmission

The forward velocity of propagation of a sound wave is caused

by sinusoidally alternating compressions and rarefactions in the

medium. The velocity of propagation of such a wave is given by

vT --fm (zll

where v T = Velocity of longitudinal wave propagation at the
liquid temperature_ T, ft./sec.,

fm = Frequency of the pulses used in the measurement
operation, cycles/sec., and

A = Distance, wave length, between two successive
points in the disturbance having the same phase,
ft./cycle. 4

For distance encoding purposes, the maximum measurement accu-

racy for a given liquid and a given frequency of disturbance is the

wave length, _. Thus the longitudinal wave equation is related to

the distance corresponding to the least count of Equation 11. Since

the quantization in the final result is K quanta/ft., and since the

/_qmin is defined to be one quantum, Equation 1 1 becomes

i quantum (22)
Least count distance, ft. = k K quanta/ft.

The limiting Case defining the required ?k is found by equating the

least count distance, Equation 273 to A .

1
A = Least count distance = ------ • (Z3)

k K
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Then Equation ZI_ when rearranged becomes

vTkK
f = (Z4_
m 1 quantum

where fm = Frequency of the pulses used in the measure-
ment operation, cycles/sec.,

v T == Velocity of longitudinal wave propagationat the
liquid temperature T, ft./sec.,

k m Encoding accuracy factor, ratio of the size of the
smallest unit of measurement in a resultant to
that of the least accurate factor used in the cal-

culation of the resultant, dimensionless, and

K == Resultant quantization, quanta/ft.

Wave Length, Quantization, and Surface Waves

High resultant quantizations, K, are related to the measure-

ment wave length and to the surface waves of the liquid. By speci-

fying high quantizations, the wave length of the ultrasonic frequen-

cy must become proportionally short. This can be seen in Equation

X3. Yet this is not the only result.

The higher quantizations enable the measurement device to

distinguish between the crests and hollows of a surface wave whose

vertical distance is greater than A. Since the purpose of the high

quantization is to distinguish a liquid height change which is equal

to A, the presence of surface waves must be eliminated. Thus in

the region of the surface from which the ultrasonic echo will be

reflected, some physical provision must be made to insure that the

surface waves which are present are small in comparison to A.

This may require nothing more than a baffle to prevent liquid
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splash from affecting the liquid surface which is to be measured.

Velocity Characteristics

The velocity of propagation of a longitudinal wave in the liq-

uid is important to the analytical development of the digital trans-

ducer. Equation 24 demonstrates this. Of equal importance to the

calibration of the instrument is the variation of the velocity with

liquid temperature. The velocity of sound in liquids usually has a

negative temperature coefficient. This means that the velocity de-

creases with increasing temperature. Water with its positive co-

efficient is a notable exception. Of importance to the calibration of

the digital transducer is not the magnitude of the velocity change,

but rather the sign of the temperature coefficient. To illustrate

this, the following is presented.

For any digital transducer application, one will know the liq-

uid and the liquid temperature range over which operation is de-

sired. Further, the approximate velocities of wave propagation at

these extreme temperatures and the sign of the temperature coef-

ficient of velocity will also be known. With this information_ one

can determine the worst case requirement for the wave length A.

For a constant frequency of disturbance, the temperature ex-

treme which has the larger velocity of sound propagation determines

the largest A which is acceptable for the required measurement ac-

curacy. At all lower velocities the quantization will be better than

desired, since the wave length will be shorter. Thus Equation 24
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must be rewritten as

where

f
m

VlkK

I quantum

v 1 = Larger velocity of wave propagation of the two
temperature extremes, and

(25)

V
S

= Smaller velocity of wave propagation of the two

tempe rature extreme s.

One can now state that

1. If the temperature coefficient of velocity is positive, then

v 1 occurs at the high temperature extreme, and

Z. If the temperature coefficient of velocity is negative,

then v I occurs at the low temperature extreme.

The sign of the temperature coefficient of velocity also deter-

mines the final adjustment of the compensating distance, d. As

illustrated in Figure 2, the distance, de can be adjusted by moving

the reflection plate forward or backward over a small range. This

adjustment is necessary because the distance, d_ cannot be meas-

ured physically, since the distance that the sound projector crystal

face lies within the protective coveri__g is not P__.own.

It is necessary to set the distance d by utilizing the Regis-

ter #3 readings of the transducer itself. Equation Z states that for

a given distance, d, the smallest velocity of sound propagation, Vs,

will produce the largest time, tz, which must be encoded. This

largest count must equal the total count capacity of Register #3.

Calibration is achieved by placing the compensating sound projector

and reflection plate in the liquid at the temperature extreme which
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produces the smaller velocity of sound propagation. Then the dis-

tance_ d is adjusted until the encoded tZ measurement produces the

maximum count in Register #3. One can now state that

i. If the temperature coefficient of the velocity is positive,

then v occurs at the low temperature extreme; and the
S

distance d_ must be adjusted at that temperature, and

2. If the temperature coefficient of the velocity is negative,

then v s occurs at the high temperature extreme, and the

distance d must be adjusted at that temperature.

Echo Reflection interface

The physical arrangement of the measuring sound projector

as shown in Figure 2 implies that the ultrasonic energy, which en-

ters the liquid from the sound projector, travels to the liquid inter-

face where it is reflected back to the original source as an echo.

The requirements of a good interface, i.e., one which reflects

most of the incident energy, will now be presented.

Figure 7 illustrates the interface between two different me-

dia.

where

The characteristic irnpedence of each are given by

Z __

1 el Vl

Z2 = _2 v2

Z. ---
1

(26)

(27)

Characteristic acoustic irnpedence of each

medium [mechanical irnpedence (f_rce/velo-

city) per_unit area], (lb. sec. )/ft. _,

Density of each medium, slugs/ft. 3 and
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v i = Velocity of longitudinal wave propagation of
each medium, ft./sec.

, /,, 2//// ,,

Zl

Prior to Reflection After Reflection

Figure 7. Reflection at the Interface

The pressure waves at each side of the boundary must satisfy two

conditions: (1) the total pressure must be the same, and (Z) the

particle velocity into the boundary must equal the particle velocity

out of the boundary on the other side. 7 From these considerations

the general formulas result.

and

where

Pref____l Zz/Z 1 -1

P'ln Zz/Z 1 +1
(28)

"" or7 1 7_'trans ¢'1"2 _1'

P. Z Z +1In /Zl
(291

P. = Maximum instantaneous pressure amplitude of
1 the incident, reflected, and transmitted waves.

For the Digital Liquid Level Transducer, one would like the

ratio Prefl/Pin to be as close to las is possible. Thus if Z 2<_Z1,

Prefl = -1 (Pin), where the -1 indicates a phase reversal, and
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Ptrans is almost zero. For Z2 >> ZI' Prefl _ Pin' but Ptrans

XPin. Thus if the designer of the ultrasonic equipment had a

choice (in a given application, he usually doesn't), he would like to

use an interface which is characterized by Z z << Z I.

Propagation Los s

Future measurement applications which embody the concepts

of the Digital Liquid Level Transducer will be determined to a

great degree by the purely ultrasonic phenomenon of propagation

loss. It is this loss in a given liquid at a given ultrasonic wave fre-

quency that will determine the depths which can be successfully

measured for the electrical energy which must be expended in the

sound projector.

Propagation loss is the sum of two types of acoustic energy

attenuations. They are spreading and attenuation losses. 8 Spread-

ing loss results from the divergence of energy over an ever increas-

ing area. It is independent of frequency. Under ideal conditions,

the spreading loss obeys the inverse square law. The intensity of

the acoustic energy is inversely proportional to the square of the

distance which it has traveled from a point. The attenuation loss

results from the absorption of the energy by the medium. This

loss, while being independent of the length of the path, is a function

of the frequency of the acoustic wave generated. Thus to discuss

the feasibility of a given application, one must specify the liquid,

the frequency, and the distance to be measured.
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In this general discussion, however) it is more desirable to

discuss propagation requirements by specifying only the liquid.

This is possible by selecting one frequency and by observing the

absorption per unit length of path for various liquids. Various ul-

trasonic investigators have done just this. 9 Their results indicate

that the absorption coefficients are greater than those calculated on

the assumption of purely viscous losses. Based on the observa-

tions of Teeter, Table 1 presents selected liquids whose absorp-

tions were determined at room temperature for an ultrasonic wave

frequency of 15 Mc./sec.

Inorganic Salt Solutions

Sodium chloride (saturated)

Sodium bromide (saturated)

Synthetic sea water

Ammonium chloride (saturated)

Hydrogen chloride (pill)

Organic Liquids

Benzene

Ethe r

Acetone

Ethyl alcohol

Water (Z4°C)

Absorption coefficient

for power) db/meter

85

65

120

90

7O

1350

ZIO

75

500

75

Table i. Energy Absorptions for Various Liquids
At a Wave Frequency of 15 Aic./sec.
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It is interesting to note that Teeter reports the power absorption

coefficient of water at 24°C resulting from an ultrasonic frequency

of 10 lvic./sec, to be 50 db/meter. Thus the attenuation loss as a

function of frequency is demonstrated.



CHAPTER III

LOGICAL IMPLEMENTATION OF THE

DIGITAL LIQUID LEVEL TRANSDUCER

Statement of the Measurement Problem

For the purpose of demonstrating the validity of the concepts

of the Digital Liquid Level Transducer, a measurement problem in

the Numerical Control Laboratory of Case Institute of Technology

was chosen. This problem involved the digital encoding of water

level information by using a float and linkage system connected to

a ten binary bit absolute brush encoder which provided feedback in-

formation to several generations of digital controllers. The meas-

urement problem specification is as follows:

Liquid:

Measurement range:

Accuracy:

Temperature extremes of liquid:

Digital output:

Water

2 feet

+ 0. 1% of the full

range

40 to 100OF

Absolute binary

Number of complete operations per second: 4 (minimum)

Based on this statement, a Digital Liquid Level Transducer has

been logically implemented to perform the same measurement

ope ration.

34



35

Transducer Requirements

The operational requirements of the Digital Liquid Level

Transducer are:

1. To meet measurement problem specifications.

Z. To provide for parallel binary read-out,

3. To provide for serial binary read-out, both most signi-

ficant and least significant bit first, and

4. To utilize, if desirable, commercially available sound

projectors and sound projector drivers.

Information Repre sentation

The selection of the binary number system for the measure-

ment and calculation operations in the digital transducer is a nat-

ural outgrowth of the problem specification that the resultant meas-

urement will be in binary. By using a single number system

throughout, no number system conversions were required; and com-

plexity of the system, which could result from code conversions,

was circumvented.

Problem Calculations

The logical implementation of the transducer rests on the

accuracy, frequency, and total count equations which were devel-

oped in Chapter IL The accuracy of the over-all measurement is

specified to be +0.1% of full range. This then defines the smallest

unit of height to which a definite numerical value can be assigned
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over a Z foot range.

Ah
rain

Thus by employing Equation 5

_ (0. 1%) (X ft.)
ioo% = o.ooz ft.

Since/kqmin is defined to be one quantum, Equation 6 states that

I quantum (100%) = I000 quanta
qmax = 0. i%

Also from Equation 6,

/kqmi n
K--

/%hmi n

the resultant quantization is

- 500 quanta/ft.

Before the operational requirements can be completely speci-

fied, two design choices must be made--the selection of the com-

pensating distance, d, and the determination of k. The factors

which contribute to the decision on d are as follows:

1. The use of a short distance is desired in order to keep

the assembly of the two sound projectors relatively small.

2. The distance, d, must be specified as a binary number,

i.e., 100... 00 as required by Equation 10.

By selecting a compensating distance of d =- u.__uu_=Lft., _-^*_,,_.,fa _a.....

were considered. For the quantization of 500 quanta/ft., the com-

pensating distance in quanta becomes

d = (500 quanta/ft. ) (0. 256 ft.) = 128 quanta

The binary representation for 128 quanta is (10000000)Z which

meets the requirement of Equation 10.

The factors which contribute to the selection of k, the ratio
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of the smallest unit of measurement in a resultant calculation to

the smallest unit in the least accurate factor, are as follows:

1. To obtain an accurate calculation resultant, k should be

as large as is practical.

2. The ratio should be easily represented in the binary.

Thus k should be of the form Z0 Z 1, 22

3. The effects of trial values of k can be observed in the

measurement frequency and propagation losses of Equa-

tion Z5 and Table 1, respectively.

By applying Equation Z5 and by using v I = 5000 ft./sec, for water

and K = 500 quanta/ft., the effect of k on f is observed.
m

If k equals Then fm equals

20 = 1 Z. 5 Mc./sec.

Z 1 = Z 5.0 Mc./sec.

2 2 = 4 10.0 Mc./sec.

2 3 = 8 ZO. 0 Mc./sec.

The ultrasonic absorption coefficients for water are 75 db/meter

at 15 Mc./sec. and 50 db/meter at 10 Mc./sec., as presented in

Table 1. Thus from the ultrasonic projector drive requirements,

ratios of 8 and 4 are not desirable. A value of k = 1 is equally un-

desirable, since the smallest unit of a calculation factor would be

equal to the smallest unit of the resultant. Thus both ultrasonic

and analytic considerations bracket the ratio of k = Z which is used

in the digital transducer.
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The register capacities for the encoding of times_ t 1 and t2

can now be specified. The total count requirements for Register

#1 and #3 are described by Equations 19 and Z0, respectively.

Total Count Register #1

Total Count Register #3

" 2(2 ft. ) (500 quanta/ft. ) (2)

= 4000 counts

= 2(0.256 ft. ) (500 quanta/ft. ) (Z)

= 512 counts

The register capacities have been stated in "number of counts" in

order to have the term "quanta" apply only to the resultant quanti-

zation. Another observation is that qmax = 1000 quanta; yet this

value is only one-quarter the size of Register #1. This results (1)

from the time being encoded over a distance of Zhma x and (2) from

the use of k = 2 in order to insure numerical accuracy in the digi-

tal computation.

Register #1, in binary representation, must be capable of at

least the 4000 count capacity. Since 212 equals a total count of

Anode,.,,., +_,o._...v...R_gister.... #1 (and backward counting Register #2 also)

must consist of 12 binary bits. Because of the judicious choice of

d, Register #3 will consist of 9 binary bits.

Timing Specifications

The intervals of time required for the measurement and the

complete operation are determined by the smallest velocity of

sound propagation and by the number of complete operations which
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must be made in a second. The difference between these two times

determines the maximum available calculation time.

The velocity of sound in water for the two temperature ex-

tremes, after unit conversions, is given by the following: 10

v = 4710 ft./sec.

v = 4950 ft./sec.

at 40°F

at 100°F

Also this author provides a vast list of compounds, their velocities,

and temperature coefficients of velocity.

The maximum measurement time, tin, results from meas-

uring the maximum level at the smaller velocity of the two temper-

ature extremes. Thus by applying Equation 1,

where

t = 2(2 ft. )/(4710 ft./sec.) = 849 }_sec.m

t = The maximum measurement time required by
m the digital transducer.

The maximum complete operation time is specified by the

reciprocal of the required 4 operations per second. Thus the max-

imum calculation time, tc, plus the maximum measurement time_

tm, must be less than or equal to one-quarter of a second. Finally,

one Can state that the calculation time is

where

t c _< (250, 000 - 849) ]4sec.

t = The maximum available calculation time which
c the digital transducer may utilize.
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Measurement Frequency

The relationship between the velocity of sound in the liquid

and its temperature specifies the measurement frequency for the

digital transducer. After noting that the measurement frequency

requires the larger of the two velocities, Equation 25 becomes

or

f
m

(4950 ft./sec. ) (Z) (500 quanta/ft. )

1 quantum

f == 4.95 Mc./sec.
m

Calculation Frequency

The calculation frequency of the digital transducer is prima-

rily determined by the maximum available calculation time as dis-

cussed in the Timing Specifications. A more complete statement

of the calculation frequency is given by rearranging Equation 15.

f tt

c tc

In the worst case,

Thus

R can become the full count capacity of 4000.

4000
f = = 16 kc./see.

c 0. 249 sec.

As a result, if f is chosen equal to or greater than 16 kc. /sec.
C

the complete operation requirement of 4 per second will be met.

Water and Air Interface

With the application for the Digital Liquid Level Transducer
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now defined, one can discuss the echo reflection Capability of the

water and air interface. By applying Equations Z6 and 27, the

characteristic acoustic irnpedence of each medium is determined.

Z
water

Z
air

= (1.93 slugs/ft. 3) (5000 ft./sec. )

3
= 9650 (lb. sec.)/ft.

= (0.0023 slugs/ft. 3) (1126 ft./sec. )

= 2.59 (lb. sec.)/ft. 3

The ratio of the water impedence to that of the air is approx-

imately 3700. By Equation 28, the maximum instantaneous pres-

sure amplitude of the reflected wave is practically identical to that

of the incident wave. The transmitted pressure amplitude is virtu-

ally zero by Equation ?-9. From this discussion one can conclude

that since the change in acoustic irnpedence in passing from water

to air is so great, the interface becomes almost a perfect reflector

for underwater sound.

Considerations of Design

The need to physically implement the concepts of the Digital

Liquid Level Transducer gives rise to problems of design for which

there is no single solution. The purpose of this chapter division is

to discuss three areas in the digital transducer which contain such

de sign considerations.
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Timing Design

That part of the digital transducer which provides control and

direction for the equipment which performs the measurement and

Calculation operations is called the timing or control logic. Basi-

Cally this logic must receive and record a start operation signal,

cause registers to be cleared, cause the ultrasonic pulses and the

time encoding to begin, Cause the calculation to occur, and prepare

itself for the reception of the next start signal. The cyclic nature

of its operation suggests two possible implementation techniques.

These are the monostable multivibrator and the gated techniques.

The monostable multivibrator or one-shot technique involves

the use of devices of the same name to satisfy the control required.

The one-shot, as its informal name implies, has one stable state.

On receipt of an operate pulse, the device is upset from its stable

state into a second quasistable state. There it remains for a fixed

time delay, after which the one-shot returns to its former stable

state. Thus the timing of the digital transducer might consist of

a chain of one-shots whose time delays in the upset state are equal

to the time requirements of the various operations in the transducer.

As one device returns to its former state, it would cause the upset-

ting of the next device.

The advantages of such a technique are its straight forward

logical concept and its lower expense. Its disadvantages are prima-

rily physical.

1. Each device must be individually adjusted to provide the
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correct delay.

Z. The timing Cannot be made to sequence slowly to enable

trouble shooting by observing panel lights as indicators.

3. Should the measurement range be alteredp each of the one-

shots would need to be readjusted.

The gated technique for the timing utilizes a master clock

whose output pulses are counted in a timing counter. Logical (volt-

age level operated) gates are then used to sense the count total in

the timing counter. By this arrangement the gated technique pro-

duces the time requirements of the various operations in the trans-

ducer. Figure 8 illustrates the gated timing concept.

Master
Clock

Voltage
Levels

Outputs to control
Measurement and

Calculation

Timing
Counter

[!r!!!!!!
Logical
Gate s

FRMV

Pulse

-v
Start

Ope ration

Figure 8. Gated Timing Technique

The advantages of the gated timing technique are summarized

as follows:
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1. The timing is dependent solely on the master clock adjust-

ment. This clock is normally called a free running multi-

vibrator, FRMV.

Z. By the use of a manually operated switch, the entire tim-

ing can be made to sequence slowly for visual sub-system

check out.

3. Altering the measurement range requires a simply instru-

mented pulse division of the free running multivibrator

frequency.

The disadvantage of the gated timing technique is that the

scheme requires approximately 1/3 more logic (8 transistors) than

does the simpler one-shot technique.

The design decision to utilize the gated technique in the logi-

cal implementation of the digital transducer timing is based on an

experimental need of developing a transducer timing system which

can be easily checked and changed if the need arises. In short, the

advantage of the gated technique is its experimental flexibility.

Oscillator and Ultrasonic Pulse Independency

• The design decision to allow the oscillator frequency to func-

tion independently of the ultrasonic start signal is based on the

Chapter II discussion of the Synchronization of the Oscillator Fre-

quency. This discussion concluded that for a given counting fre-

quency, the maximum count error was independent of the relation-_

ship between the oscillator frequency and the start signal, Thus to
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logically require such synchronism of frequency and signal would

add nothing to the digital transducer except complexity.

Start Operation Pulse Coincidence

An outgrowth of the decision to use the gated timing scheme

is the pulse coincidence problem at the start of the operation cycle.

Basically the timing counter can receive pulses from the free run-

ning multivibrator and from the start operation switch. If these two

pulse sources provide pulses which are close together in time, one

can rightfully ask what the timing counter will recognize.

1. If the timing counter recognizes the pulses as one, them

the counter will count to one and will remain at this count

level for one complete cycle of the FRMV. The next pulse

from the FRMV will carry the count to two, and correct

ope ration will continue.

2. If the pulses are close together in time but are not coin-

cident, then the timing counter will record both of them;

and the time that the counter is at the count one level will

be greatly shortened. Further, one cannot specify the

time duration of the one count.

To avoid the use of anti-coincidence logic in order to assure

the constant separation of the pulses, the flexibility of the gated

technique was used to obtain a simpler solution. This involved de-

fining count one to be a "No operation" count. Thus the time dura-

tion of count one was made immaterial to the operation of the digi-
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tal transducer.

Transducer Operation

The digital transducer operation will be presented by describ_

ing the sequence of events in one cycle of operation. The individual

operations of the circuit modules which constitute the transducer

sub-systems are discussed in Appendix A. The circuit schematics

and logical symbols are also presented. Appendix B presents the

consideration of forward and backward binary counting.

Measurement Operation

The measurement operation in the digital transducer is divid-

ed into three steps. These are initialization, ultrasonic projection,

and echo reception. Figure 9 illustrates these three steps. The

function of the initialization is to ready the control logic and the

registers for the approaching measurement and calculation opera-

tions. Initialization includes the following:

1. Flip-flops of Registers #1 and #3 are reset. This action

insures that the measurement operation starts with no

count totals in the registers which will encode the times

t 1 and t Z.

Z. Control flip-flops E 1 and E Z are set. These memory

units record the reception of ultrasonic echos. Thus they

control the counting in Registers #1 and #3.

3. Prior to initialization control flip-flop E 0 was reset.
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UltrasOnic
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#I
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O
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0
0 Reset

Set Inhibit

Figure 9. Measurement Implementation

Ultrasonic projection includes those operations which produce

and send _^ ,,1,_=_n_c signals into the water. The projection re

quires the following:

1. The ultrasonic pulse gate, G.P.G. #4, is opened for a

specified time. During this time the oscillator signal

drives each sound projector through the corresponding

ultrasonic pulse generator.

Z. These driving signals are coupled through the amplifiers

and the Schrnitt trigger squaring circuits to the control
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flip-flops E 0 and E 2.

3. Flip-flop E 0 is set. This action simultaneously allows

gated pulse generators #I and #Z to transmit count pulses

to Registers #i and #3, respectively.

4. No change of state has occurred in flip-flop EZ, since the

resetting action was logically inhibited by the reset in-

hibit signal.

The echo reception involves the control actions which are

taken to stop the counting in Registers #i and #3 when the echos are

received. For the tI encoding, the following occurs:

i. When the echo from the surface of the liquid is received,

it is amplified, squared, and coupled into flip-flops E 0

and E 1.

Z. Since E 0 is already set, no change in this flip-flop occurs.

3. The resistor control gate of flip-flop El, which was en-

abled when E 0 was set, allows the echo pulse to reset flip-

flop E 1"

4. The resetting of E, disables G. P.G. #i, and the forward
&

counting into Register #I is stopped with the contents at

fmtl =A.

For the time encoding of the fixed distance d, the following

Occurs:

i.

Z.

The echo from the reflection plate is amplified, squared,

and coupled into flip-flop E Z.

Since the reset inhibit signal is not present, flip-flop E Z
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is reset.

3. This resetting disables Go P. G. #Z, and the forward count-

ing in Register #3 is stopped with the contents at fm tz = B.

The characteristics of the receiving equipment time delays

can now be discussed. The amplifiers and Schmitt triggers possess

time delays which could adversely affect the encoding of times t 1

and t Z. For example, if the digital ultrasonic start signal was ap _-

plied to the G. P.G. gates directly, then the times encoded would

be in error by the time delay of the echo travelling through the am-

plifier and Schmitt trigger combination. To avoid this encoding er-

ror, the start signal and the echo traverse the same amplifier and

Schmitt trigger path.

Calculation Ope ration

The calculation operation of the digital transducer accepts

the time encoding information in Registers #1 and #3 and performs

the calculation in three steps. These are read-in, count-down, and

zero u_._...;.... *°^-- __'_gure_ i0 .presents the implementation of these

three steps. The read-in step results in loading the count of f tl,m

which is in Register #i, into the backward counting Register #2.

This is accomplished as follows:

i. At some time prior to read-in, all of the flip-flops of Reg-

ister #2 are set. For simplification purposes, suppose

Register #Z contained four binary bits rather than twelve.

Thus it would possess the full count of iiii, which is
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decimal 15.

o For read-in, if Register #i contained the count of decimal

i0, which is binary 1010, itis necessary to reset the 20

and Z2 binary bits of Register #2.

Register #1

Typical
Co.'me ction

Read-In __

Signal

/0 Set

set

0 :f B

Register #2 c

illlllllILl

Detection

Logic

I

1

[Re ist r  Z

J I I I J I i :1 NO_ ?nable

Typical
C onne ction

Nine Input I J J I I I J I

Register #3

-v Whe_ Zero is Detected

Figure 10. Calculation Implementation

o Since the 1 Outputs of the flipaflops in Register #1 are used

as control levels in Register #Z, then applying the read-

in signal will result in resetting only those flip-flops of

Register #Z which correspond to those in Register #1

which are reset. Further, the resetting of flip-flops in

Register #2 will not result in transition propagation to
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more significant stagesp since the counter counts back-

ward.

4. Register #2 now contains count total A, and the calculation

of A/B can proceed.

The count-down step utilizes the operational multiplier to ob-

tain the ratio A/B. Since Register #1 functions as a forward count-

er during both the measurement and calculation operations, it must

be reset prior to the initiation of the count-down pulses to Register

#2. When NOR #3 receives the enable (0 volt) signal on terminal

#Z, the following occurs:

1. Since Register #2 is not zero, the pulse train on terminal

#1 of NOR #3 appears at its output.

2. This frequency, fc' is directed to Register #1 and to the

operational multiplier as prescribed in the Transducer

Implementation Equation section of Chapter II.

3. The operational multiplier modifies fc by the numeric B

and provides an output frequency of f B to the backwardc

rnl,_f.er.. Register #2.

4. Pulses continue to enter Register #1 and the operational

multiplier until Register #2 becomes zero.

The zero detection step includes the following:

1. As long as terminals #2 and #3 are at 0 volts, the pulses

continue to appear on the output of NOR #3.

2. The pulses are inhibited when the zero detection logic of

Register #2 causes terminal #3 of NOR #3 to go to the



5Z

.

negative potential.

The count, which Register #I now contains, represents

the temperature compensated absolute binary measure-

ment of the depth.

The logical implementations of Registers #i, #Z, #3,

are presented in Figures 11, IZ, 13, and 14, respectively.

and #4

Regis-

ter #1 possesses, not only the ability to count forward at the fre-

quencies of f and frn' but also the ability to shift out the depthc

measurement most significant bit or least significant bit first. For

these shifting operations, the trigger inhibit input is used to avoid

flip-flop state changes when positive going voltage transitions occur

at the T inputs. Register #Z possesses, not only a Base Resistor

Set, which is used in the calculation operation_ but also a manual

Emitter Reset. After the equipment is turned on, but before the

first operation cycle, this Emitter Reset is used to insure that Reg-

ister #Z contains zero and that NOR #3 is inhibited. Registers #3

and #4 differ only in the speed of the logic which is used.

The control of the measure__ent and calculation operations is

the function of the control or timing logic. The next section will

present the gated timing solution and the complete logical imple-

mentation of the digital transducer.

Timing Ope ration

The transducer timing is synthesized by explicitely defining,

with respect to time, the exact operations which must be performed
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to enable the transducer to complete an operation cycle. By equating

this sequential list to the count sequence of the timing counter, the

timing will be determined; and the logical equations for the timing

gates can be written. The calculation frequency, fc = Z0 kc./sec.,

is used for the calculation operation and for the timing system. By

having one clock to perform the two functions, the need for a second

clock was removed.

The transducer timing counter consists of a 5 bit forward

counting binary counter, which is designated as flip-flops A through

E. For an input frequency of Z0 kc./sec., each count corresponds

to 50 }_sec. For timing operations of 100 _sec. duration, only

flip-flops A through D are involved. Table Z presents the sequential

list of transducer operations, the timing counter count, and the logi-

cal equations which are necessary to produce the operations.

Operation Timing Counter Time
Count in

Dec. Binary _sec.

ABCD.E

Systern Ready 15 1111

Start Operation Signal
1. Enable counter to

count 14.

Z. Keset F.F. E 0

No Operation 1

0 0000 0

Initialize System Z

Reset Registers #1,
#3, #4; Set Register #Z;

Set F.F. E 1 & E Z.

0001 100

0010 ZOO

Function

NAND #1 =

(Zero Detection).
(Start Signal)

NOR #1 =A+B+U

Transition used

NOR #Z = ABCD

Table Z. Timing Statements (continued)
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Ope ration

No Ope ration

Timing Counter Time
Count in

Dec. Binary _sec.

ABCD. E

3.0 0011.0 300

Generate Ultrasonics 3.5

1. Signal packet
Z. Inhibit reset of

F.F. E z.

This provides meas- 4

urement time of

950 _sec. 5

0011. I 350

0100

0101

6 0110

7 0111

8 i000

9 I001

I0 i010

11 1011

lZ 1100

Read fm tl into

Register #Z by

trailing edge at

I296.8 _sec.

Reset Register #i

12.5 Ii00. 1

400

500

600

700

800

900

i000

Ii00

1200

1250

Enable Calculation

until Register #Z
contains zero.

Pulses for Calculation.

Maximum time avail-

able for calculation is

0.2 sec.

System Ready

13 Ii01 1300

14 11 I0 1400

15 IIII

Function

NAND#Z = XBCDE

P.G. #3 (0.72 Hsec.)

P.G. #6 (21 _sec.)

m

NAND#3 =ABCDE

NOR #4 =ABCD

NAND #4 = ABCD

NOR #3 = (Pulses, fc)"

(NAND #4)"

(Zero Detection)

NAND # 1 =

(Zero Detection)-

(Start Signal)

Table Z. Timing Statements
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The combining of the implemented timing statement with the

measurement and calculation implementations results in the com-

plete logical statement of the Digital Liquid Level Transducer. This

is presented by Figure 15. As a supplement to this logical imple-

mentation, Figure 16 presents the transducer timing diagram.

To illustrate how these figures define, both in circuit modules

and in time, the operation of the transducer, the operations which

occur at count 3.5 will be discussed. Table 2 defines count 3.5 to

be used for the generation of the ultrasonic signals. Thus the action

of NAND #Z is presented on the timing diagram at count 3.5. The

signal packet is enabled by pulse generator #3 (P. G. #3), as is pre-

sented in the next entry of the timing diagram. The following obser-

vations can be noted from other entries in the timing diagram. The

signal packet, which is the output of G. P. G. #4_ drives both ultra-

sonic pulse generators. The generators drive the sound projectors,

and the amplifiers and Schrnitt triggers transfer this start counting

information to flip-flops E 0 and E Z. Flip-flop E 0 is set, and the

counting to Registers #1 and #3 is enabled by G. P.G. #1 and #Z en-

able gates. Because P.G. #6 provides a reset inhibit signal, flip-

flop E z does not change state. The preceding timing at count 3.5

Can be followed logically also in Figure 15.

Ope ration Variations

The function of the manual switches which are presented in

the logical implementation will now be discussed.
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PRESET Switch (Location: lower left quadrant of Figure 15). The

PRESET switch is used only after equipment has been turned

on. Its function is to reset the flip-flops E0, A, B, C, D, and

Overflow and to reset the flip-flops of Register _Z. It is im-

perative that states of these control and measurement memory

devices be determined for correct operation of the transducer

to result. If at some later time the count capacity of Register

#I is exceeded, the Overflowflip-flop will be set, and the

Overflow Light will come on. To restore normal operation,

the PRESET switch will be depressed and released.

STAKT SOURCE Switch (Location: upper right quadrant). The

START SOURCE switch enables the use of an internal or an

external start source. For operation of the transducer by

itself, the internal start source will be used.

INTERNAL START SOURCE Switch (Location: upper right quad-

rant). The INTERNAL START SOURCE switch enables the

complete operation of the digital transducer without the use

of circuits which are external to the transducer.

SYSTEM OPERATION Switch (Location: upper right quadrant).

The SYSTEM OPERATION switch provides a choice of clock

and single pulse operation.

SINGLE PULSE Switch (Location: upper right quadrant). The

SINGLE PULSE switch enables the measurement and calcu-
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lation operations to be sequenced slowly in time for indicator

light verification of correct operation.

RANGE Switch (Locations: upper and lower right quadrants). The

RANGE switch makes the digital system capable of measuring

maximum water depths of Z and 8 feet.

CALCULATION INTERRUPT Switch (Location: upper left quadrant).

The CALCULATION INTERRUPT switch enables the operation

of the transducer to be stopped just after the time encodings

have been completed. At this time counts fm tl and frn tz can

be read in their respective registers by the use of the indicator

lights.

REGISTER #1 RESET Switch (Location: upper left quadrant). The

REGISTER #1 RESET switch provides a manual means for a

resetting Register #1 when the CALCULATION INTERRUPT

switch is on. Then by switching the INTERRUPT switch to

off, the calculation operation will occur.

Transducer Implementation

The construction of the digital transducer involves the con-

cept of function modules. These are sub-systems of the transducer

whose circuit actions are so closely related that their adjacent

physical location is desirable. Figure 15, which presents the logi-

cal implementation, also indicates these function modules. Each

function module has been constructed using discrete components
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on an individual printed circuit card which measures 5" x 7 1/2".

Fourteen cards are required for the transducer. The boxed num-

bers associated with the interconnections of the various cards indi-

cate the terminals of each card which are used. The amount of

logic which is found on each card is determined by the availability

of unused terminals and unused card space. By using connectors

which have Z4 terminals, it is possible,to get complete registers

(Registers #3 and #4) on individual printed circuit cards.

Figures 17 and 18 present the front and back views of the in-

strument, respectively. The front view illustrates two items which

have not been previously discussed. First, the connector in the

lower center of the panel provides both the 0 and 1 side Outputs for

the 10 higher order flip-flops of Register #1° Thus the compen-

sated level measurement can be read into other digital equipment

in a parallel form. By using only the most significant and least

significant bit outputs, serial read-out is available. Second, the

lights which indicate the level measurement are also only 10 in num-

ber° These correspond to the 10 higher order flip-flops of Register

#1. To check operation of the entire 1Z bits of the register, the

lights for the two least significant bits are located on printed circuit

card #9° These can be seen in the picture along the top of the card

near the back of the instrument.

The back view of the instrument further illustrates a con-

struction feature. The four connectors, which are located near the

center, provide one with the capability of visually checking the oper-
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Figure 17. Digital  Transducer, Front View 

F igure  18. Digi ta l  Transducer, Back View 
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ation of Registers #1 through #4 by observing the indicator lights

on the front panel. The observation of the timing counter, in addi-

tion to the observation of Register #4, is possible when the plug is

attached to the Register #4 connector. In every case, the two least

significant Lights for the two least significant flip-flops of the regis-

ter being observed are on card #9 near the back of the instrument.

The two lights on card #9 near the front of the instrument are used

to observe flip-flops A and B in the timing counter.

Figures 19 through ZZ illustrate various digital transducer

printed circuit cards. Figure 19 presents Register #3, which is

used for the high speed encoding of time_ t Z. Figure Z0 illustrates

the oscillator and the 5 Mc./sec. control logic which form card #1Z.

Figure Z l presents the Schmitt trigger and ultrasonic pulse gener-

ator circuits. Finally, Figure ZZ shows the component layout of

the two 4.9 Mc./sec. amplifiers.

The ultrasonic projectors and the echo reflection plate are

illustrated in Figure Z3. By using the mounting arrangement which

is shown, it was possible to remove the projector assembly from

the water when measurements were not desired. Thus physical

attachment of the projector assembly to the tank was avoided.

Figure Z4 presents the Digital Liquid Level Transducer in

its protective enclosure.
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Figure  19. Regis te r  #3 

F i g u r e  20. Osci l la tor  and 5 Mc. / s e c .  Contro l  Logic 
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Figure  21. Schmitt  T r i g g e r s  and 
Ultrasonic  Pulse  Genera tors  

F igu re  22. Amplifiers,  4.9 Mc. /set. 



67 

Figure  23.  Ultrasonic  Pro jec tor  Assembly 

F igu re  24. Digital Liquid Level  T ransduce r  



CHAPTER IV

RESULTS OF TESTS

Water Temperature Variation

The temperature variation tests were conducted to observe

the effect of water temperature on the compensated digital measure-

ment of height. These tests were performed by heating the water

in the 55 gallon test tank with three electric emersion heaters. To

provide a uniform temperature throughout, a small stirring motor

was used. Measurements were made with the stirring motor run-

ning. This resulted in surface ripples. The water temperature was

obtained by using copper-constantan thermocouples. The reference

junction of 3Z°F was established by using an ice and water mixture.

Two temperature variation tests were conducted. They dif-

fer in two items. First, the fixed distance d was readjusted for

the second test. By this action, the requirement of establishing

d at the tcmperature extreme which results in the lower velocity

of propagation could be illustrated. Second, the tests differ in the

amount of water which was measured. Test #I, which was for the

greater depth, required about 5 1/2 hours to complete. Test #2,

which obtained the measurements for approximately the same tem-

perature range, required about half as long. Figure Z5 presents

the temperature variation test results. In addition to the compen-

sated digital measurement h, the (fmtl)/4 and (fmtZ)/4 counts are

68
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presented for each test. By presenting these time encoding counts

divided by 4, one can observe the uncompensated height measure-

ment and the distance d measurement in terms of the output quanti-

zation.

The system measurement accuracy for each test can be ob-

tained by noting the two extreme values of the compensated digital

measurement. Also the average compensated digital measurement

can be computed for each test. By finding the largest difference

between one of the extreme digital measurements and the average

of the digital measurements_ the system accuracy can be computed.

Table 3 presents the system accuracies which are computed for

tests #1 and #2.

Compensated h, quanta Test #1

Maxim urn 7 Z8

Minimum 723

Average of all h, quanta 726.2

Largest difference (/\h)p quanta -3. Z

hma x, quanta 1000

System Accuracy {worst case) - (1oo%)
1000

or + O. 3Z%

Test #2

327

324

325.4

+1.6

1000

+ 1.__._6(100%)
1000

+O. 16_o

Table 3. System Accuracy with Surface Ripples

After the completion of test #2, the stirring motor and heat-

ers were turned off; and ten consecutive compensated height meas-
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urements were made. The water surface was smooth. Table 4

contains these results along with the system accuracy Calculation.

Compensated h, quanta

Maximum

Minimum

Average of all h.. quanta

Largest difference (/\h}, quanta

Smal_.st difference (/\h), quanta

hma x, quanta

System Accuracy

Test #Z (Smooth surface}

326

324

324.6

+ 1.4

-0.6

1000

+0. 14% to -0.06%

of the full range.

Table 4. System Accuracy with Smooth Surface

The system accuracy of the conventional ultrasonic device is

based on the difference between the uncompensated and the average

compensated height measurements at the highest temperature ex-

treme. Table 5 presents the uncompensated system accuracy for

both tests. The poorest conventional ultrasonic system accuracy

results from the maximum depth measurement at the maximum

water temperature. This, however, is not presented in Table 5.

Measurement Frequency Variation

The frequency variation test was performed by observing the

compensated and uncompensated digital measurement values for

four different measurement count frequencies. The water surface
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was smooth, and temperature was constant for the test. Table 6

presents the digital values.

Test #1 Test #Z

Uncompensated h, quanta 670 307

Avg. compensated h, quanta 726. Z 325.4

hma x, quanta 1000 1000

Difference (_h), quanta -56. Z - 18

Uncompensated
System Accuracy -56.2 (100%) -18 (100%)

1000 1000

or - 5.62°/'0 - I. 8%

Table 5. Conventional Ultrasonic System Accuracy

Frequency, (fmtl)/4 (fmtz)/4 Compensatedf
m in in Measurement,

in Mc./sec. quanta quanta h, in quanta.

4.380 507.-75 106.50 610. Z5

4.400 510.50 107. O0 610.50

4. 950 574. 50 120.50 610. O0

5.000 580. ;'5 121.50 610.50

Table 6. Measurement Frequency Variation
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Range Addition

The 0 - 8 ft. range was added to the logical implementation

of the digital transducer in order to make the instrument useful for

other measurement applications. For the 0 - 8 ft. range, the max-

imum output quanta count remains at 1000, while each quantum now

represents 4(0. 002 ft. ). Since the 55 gallon tank test facility lim-

ited the depth measurement to approximately 2 1/Z ft., measure-

ments approaching the 8 ft. range were not possible. The capabil-

ity of measurement to this limit will depend upon the ultrasonic con-

siderations of projector signal strength, signal attenuation, and am-

plifie r sensitivity.

To study the range capability of the ultrasonic equipment, a

propagation loss test was devised. This test enabled the echo

strength to be observed for three depths within the Z 1/2 ft. limita-

tion. The water temperature remained constant throughout the test.

Figure 26 presents oscilloscope traces of the signals at the output

of amplifier #1. The top oscilloscope trace presents the-1.18 volt

echo which results from a propagation wave travel time of 900 _sec.

The initial ultrasonic drive pulses are on the far left of each trace.

After removing some water from the tank, the middle trace and an

echo of-1.29 volts at 560 _sec. was obtained. Finally, after de-

creasing the depth still further, the bottom trace and a first echo

of-1.41 volts at 207 _sec. was obtained. The second and third

echos on the bottom trace represent additional round trips by the

ultrasonic pulse between the sound projector and the surface. Now
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Ho rizontal:

I00 _tsec./cm.

Figure Z6.

Vertical:

1 volt/cm.

First Echo Voltages

A #I

G. P.G. #1

A #z

G. P.G. #Z

Horizontal:

100 _ sec./cm.

Vertical:

Amplifiers #1 and #2:
5 volts /cm.

G.P.G. #i and #2:

I0 volts/cm.

Figure 27. Measurement Range: 0 - Z ft.
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by using the first echo of the bottom trace as a reference, both for

voltage and time, one can form the following ratios for the other two

first echos.

Time Ratio

(560_ = 207,) _sec.

(900 - Z07) psec.

Echo Voltage Ratio

-(1.Z9 - 1.41) v

-(i. 18 - 1.41) v

or 0.51 0.5Z

The fact that these ratios of time and voltage are approximately

equal will allow one to extrapolate to the depth to which the digital

transducer is capable of measuring. Since the Schmitt triggers

have upset voltages of-0.5 volts, a returning echo, after amplifica-

tion, must have at least a magnitude of-0.5 volts for correct oper-

ation of the digital equipment. For a conservative estimate of

measurement depth, an amplified echo voltage of-0.75 volts will

be used. The time which corresponds to twice the maximum meas-

urement depth will be called t. Applying the time and voltage ratios,

olie obtains *_^ #,-._1....¢,,_,.

(t - Z07) _sec.

(900 - Z07) _sec.

-(0.75- 1.41,)v
-(i. 18 - 1.41) v

t =(Z.86) (693 Fsec.) + Z07 psec.

t =Z197 _sec.

Using the maximum velocity of wave propagation of 4950 ft./sec.,

the depth of water which can be successfully measured is
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Maximum Depth Measurement

(Extrapolated)
= (4950) (Z19'7/Z)

=5.4 ft.

Two items concerning this discussion must be presented.

First, the amplifier gain setting, as reported in Appendix A, was

used. Variation of this adjustment will affect the maximum meas-

urement depth. Second, the repeating echos of the bottom trace

were not used for this maximum range determination because the

repeating echo attenuation differed from the measured first echo

attenuation which was observed from the upper and middle traces.

To undertake a discussion of this signal attenuation difference or of

propagation loss in general, is not the purpose of this section or

of this paper. Rather, the purpose of expressing the ultrasonic

considerations is to provide engineering data for the solution ofa

digital measurement problem,

The 0 - Z ft. range measurement is illustrated by Figure Z7.

The oscilloscope traces, from top to bottom, present the outputs

of amplifier #I, G.P.G. #I, amplifier #Z, and G. P.G. #Z. The

manner in which Figures Z6 and Z7 were obtained is of some inter-

est to future operators of the instrument. To obtain the repetitious

operation which is illustrated by the figures, it was necessary to

ground the output of NOR #I. By this action, the timing counter

does not stop its counting at count 15 to wait for another start sig-

nal.
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Projector Beam Angle

The sharp projector beam angle was mentioned by Massa 3 as

a prerequisite for successful ultrasonic measurement. At the meas-

urement frequency of the digital transducer, however, the very

sharp beam angle of the commercial projectors was a disadvantage

for two reasons. First, the original design of the sound projector

arrangement could not be realized because of the sharp beam angle.

Figure 28 illustrates this original design which utilized the second

sound projector as only a receiver. The fixed distance for thisar-

rangement was 0.51Z ft.

Compensating

O. 51Z ft. I

Liquid Level _ IVI rv_l.,,,,,,,,,,,,_

Measuring _.....r_l J

Sound Projector _ 7/

Figure Z8. Original Ultrasonic Arrangement

This arrangement was unsatisfactory because in order to obtain a

sufficient ultrasonic signal for the compensating receiver operation_

it was necessary for the normal axis of this unit to be aligned with

the normal axis of the sound projector. Thus the liquid level meas-
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urement signal was prevented from reaching the surface.

The second disadvantage created by the sharp beam angle was

that of the critical alignment which was required between the normal

of the sound projector and the surface. The solution was to provide

the base of the sound projector assembly with an adjustable three

point support. This can be seen in Figure 23.

The tank wall proximity to the path of the ultrasonic measure-

ment signal had no effect on the signal or on the operation of the

digital transducer. This was demonstrated by moving the sound

projector assembly near a wall of the tank, by realigning the meas-

uring transducer with the surface, and by observing the ultrasonic

drive signals:and the echos. It should be pointed out that design of

the control logic for the reception of ultrasonic start and echo sig-

nals is such that a wide beam angle transducer could be used, since

echos resulting from secondary radiation axes would return to the

projector after the echo from the surface had produced correct

operation of the counting control gates.

The specifications of the ""*-.... Jr ,_nlectors are presented

in Appendix C.

Logic .Loading

Capacitive loading resulting from long wires was harmful to

the operation of the high speed logic modules. In particular, the

coupling of each output of Register #1 to an external buffer register

by #2Z gauge stranded wires six feet in length so loaded the high
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speed circuits that Register #1 would not count during the measure-

ment operation. To overcome this problem and to provide logical

read-out to another digital system , the f pulse input to Register
c

#1 has been made available on Pin #13 of the connector on the front

panel. In the upper left quadrant of Figure 15j this connector in-

formation is presented. By allowing an external lZ bit forward

counter to receive these fc pulses, which occur at a frequency of

Z0 kc./sec., the compensated liquid level measurement h will be

available to an external digital system by reading the 10 highest or-

der bits after the calculation operation has been completed.



CHAPTER V

THE PROBLEM _ DEPTH:

CONCLUSIONS AND RECOMMENDATIONS

Depth Measurement Extension

The purpose of this section is to present observations about

the digital transducer concept and its extension to greater depths.

For illustration purposes, one may consider the measurement of

a column of water 100 feet high to an accuracy of +0.1% of the max-

imum range for a 40°F to 100OF temperature range. One discovers

from Equation 6 the following facts:

1. The _hmi nis 0. 1 ft. (1. Z inches),

Z. The qmax is still 1000 quanta, and

3. The resultant quantization, K, is 10 quanta/ft.

By using an encoding accuracy factor of k = Z, Equation Z5 states

that measurement frequency fin is 99 kc./sec. This measurement

frequency is _u=ntimes o_,,_a,,-.,.,"_-ll_r+_'_._... _-1._......... p_e,qent frequency of meas-

urement and encoding of the Digital Liquid Level Transducer. In

short, the digital quantization and temperature compensation of a

liquid level measurement for the same measurement accuracy be-

comes a simpler task as the maximum depth to be measured in-

creases I

A simpler task also is the development of the ultrasonic pro-

jectors, pulse generators, and amplifiers. For example, conven-

8O
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tional ultrasonic depth measurement devices with analog read-out

are commercially available at a cost of less than $150 for water

11
ranges of 100 feet or more.

Measurement Concept Conclusions

The validity of the measurement concept of the Digital Liquid

Level Transducer can be discussed as follows:

1. The compensating time measurement does free the instru-

ment from errors introduced by changes in the velocity of

wave propagation. Since changes in velocity of wave pro-

pagation result from temperature and density changesp

then changes in these items also have no effect on the

compensated digital measurement.

2. The digital transducer is free from errors resulting

from changes in the encoding and calculation frequencies.

This capability implies that no frequency calibration is

ever required.

3. The capacity £or wide -variations in the measurement fre-

quency without adverse effect on the digital answer im-

plies that the determination of f at the liquid tempera-
m

ture extreme which produces the highest velocity of

sound propagation is not a strict requirement.

4. The necessity of maintaining a smooth water-air inter-

face increases in importance as the wave length of the

measurement frequency decreases.
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So The physical realization of the digital transducer instru-

ment for a particular depth and accuracy is easier to at-

tain as the maximum distance to be measured is increased.

Design Conclusions

Conclusions which involve the design and logical implemen-

tation of the Digital Liquid Level Transducer are presented as fol-

low s:

1. The system accuracy +0.14% to -0.06% of the full range

when measuring from a smooth water-air interface indi-

cates that the average accuracy of -+0. 1% of the full range

has been attained. Further, this accuracy result illus-

trates that the selection of an encoding accuracy factor

of k = 2 is satisfactory.

2. The concept of constructing an entire digital sub-system

on a single printed circuit card reduced the long wire

loading problems and simplified the interconnections be-

tween the logic modules. The time required for the

printed circuit layout is the price to be paid for using the

concept,

3. The lack of synchronization between the measurement fre-

quency, fro' and the ultrasonic start signal did not ad-

versely affect the compensated digital result.

4. The utilization of the gated timing method greatly simpli-

fied the check-out of the digital sub-systems.
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, The dual utilization of Register #1 in the measurement and

calculation operations is undesirable because of the capa-

citive loading created by the long wire outputs,

Recommendations for Future Activity

The recommendations for the further development of the Digi-

tal Liquid Level Transducer are as follows:

Io The addition of another IZ bit, low speed, forward count-

ing register would eliminate the trouble some dual utiliza-

tion of Register #I. To do this requires the designing of

a new Register #I on one circuit card which would be

placed in the available space between modules #13 and #14.

The present Register #I locations would be used for the

additional forward counting register with its serial shift

logic.

2. By making a higher do c. voltage source available to the

digital transducer, the ultrasonic pulse generators could

be redesigned to prodttce larger ultrasonic drive signals.

Thus the present maximum range ILrnitation would be

raised.



APPENDIX A

CIRCUIT MODULES

The circuit modules of the Digital Liquid Level Transducer

are both digital and analog. The function of this appendix is to des-

cribe the operation of each module and to present its circuit sche-

matic and logical symbol.

Digital Devices

Flip-flop

The flip-flop or bistable multivibrator is a two stable state

memory device. Figures Z9 (a _b) present three flip-flops which

differ, not in basic operation, but rather in how fast they will switch

between stable states. The two stable states are represented by 0

volts and a negative potential (-12 volts for the 100 kc. device and

-6 volts for the 1 and 5 lvfc. devices). The frequency of the signal

on the T input which each flip-flop can successfully follow is indi-

cated by its name.

Information is stored in the flip-flop by placing a positive go-

ing voltage transition on the T input or on one of the other transition

inputs: S I, S z, R 1 and R Z. The T Inhibit input and the level inputs

functiDn as control gates which enable or inhibit the transition from

causing the flip-flop to change state. If the level input is at 0 volts,

then the transition will cause state change. The transition will be

84
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1 Output ? R4 D RZ

Level

Output _ T Inhibit

Output "_"_--_-_-o0__,J-_ T input '

E. Reset

Logical

Sym bo 1

All _istors 1/4 w, _- 10%

C3 O. 05 F f

CZ 396 pf

C 1 82 pf

Inputs

I I _" _ _ 1/ II I c
I _ _R3 _ - i ,, - °1

I t,,.., _` D R5 .Base

1-2zv _ -wv_-V_+6v Resistor

I J-_ ' _ II ORz

I _ , L,. . l II

C3 $ I Reset 'Lz

T

0 Output 6

Leve 1 Transition

B.R. Reset

Schematic

R5

R4

R3

R2

RI

D

Q

22 K Ohn_

I0 K "

8. Z K "

6.8 K "

3.3 K "

1.0 K "

IN456

2N404

Figure Z9 (a). Flip-flop, i00 kc./sec.

T Inhibit

_TInput
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l Outp 2 _ R3 D3 R3

c3 • ;'1 1
_. ,, Level

T _ v, "" Inputs

,w , .-. u_. 9QLz

I _A _ .2D1 .,11 ,,cz
; aZ "" _ !" i_OS l

I T _R_! _ -I_V-Os_

1- l?_r _" .q'A" _O, Resistor --

_"OL " R_ _-_ +dv Reset

DZ Reset
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01_3. R. Reset
Output T Inhibit
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All resistors 1/4 w, +'10%

G3 0.05 _f

C2 ZO pf

C1 10 pf

R3

RZ

R1

D3

DZ

D1

Q

T Inhibit
_-0

--0
T Input

Schematic

For 1 Mc. design:
Diodes DZ are

removed.

47 K Ohm

10 K "

8.2 K "

6.8 K "

1.0 K "

IN456

FD829

FDSZ9

ZN711B

Figure 29 (b). Flip-flop, i Mc. /sec. and 5 Mc. /sec.
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inhibited if the level input is at a negative voltage.

The following definition of flip-flop operation will aid in the

explanation.

1. When the 1 Output of the flip-flop is at 0 volts, the device

is said to be in the reset condition.

Z. When the 1 Output of the flip-flop is at the negative poten-

tial stable state, the device is said to be in the set con-

dition.

With these definitions the operation of the Emitter Reset and

the Base Resistor Reset can be presented. By manually opening

the normally closed Emitter Reset switch, the flip-flop is reset,

since the 1 Output becomes ground. Also the flip-flop becomes re-

set by logically applying a negative potential to the Base Resistor

Reset. Thus a manual and a logical method are available for put-

ting the flip-flop in the reset condition. An Emitter Set and a Base

Resistor Set Can be created by placing the circuit configurations

which are involved on the corresponding terminals of the opposite

transistors.

Three types of transition signals can result in a state change.

These are the trigger, the set, and the reset signals. The positive

going transition applied to the T input results in a state change of

the flip-flop. The application of a second transition results in the

flip-flop's returning to the original state.

The set and reset actions result when the two resistor control

levels L Z of R Z and S Z are coupled to 0 Output and the 1 Output ter-
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minals, respectively. A transition set signal applied to the S 2 ter-

minal causes the flip-flop to enter or to be maintained in the set con-

dition. A transition reset signal applied to the RZ terminal causes

the flip-flop to enter or to be maintained in the reset condition.

NOR Gate

The NOR Gate is a multi_input, one output logic element which

can be used to synthesize logical AND, OR_ and NOT functions.

Figure 30 (a) illustrates a NOR Gate with five inputs. For a NOR

1, all of the diodes are removed.

The synthesis of the AND, O1%, and NOR functions is possible

by introducing a new set of definitions which relates the signal po-

larities to logic values, lZ Figure 31 illustrates the formation of

the three functions. The AND function, f = AB C, is generated when

aI__.lof the inputs are simultaneously at the +(0 volts) potential. To

emphasize the formation of the AND function, the dot is added to

the NOR 3 symbol; and the voltages present on the inputs and out-

put are shown.

The O1% function is generated when any one or all of the inputs

are at the negative potential. The plus sign which is added to the

NOR 3 symbol and the input and output voltages illustrate the ford

mation of the OR function.

The NOT and the Identity functions are similar. The NOT

function is used to obtain a logical inversion, while the Identity

function is used to obtain a signal inversion. The Identity function
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- IZv +6v

R1 _ _R3 D Inputs

Output

Schematic

(a) NOR 5 Logical Gate

Ou_ut s

Logical

Symbol

-IZv + 6v _ IZv

RI I _R3 RZ I D Inputs

Output_ Output

Schematic

(b) NAND 5 Logical Gate

ut s

Logical

Symbol

All resistors 1/4 w,_ 10%

C I 8Z pf R1

R3 ZZ K Ohm D

RZ 6.8 K " Q

Figure 30.

NOR and NAND,

I. 0 K Ohm
I

IN456

ZN404

Logical Gates:
100 kc./sec.
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f -- A_C A
-- + ]_

C

f=A+_+C__

AND Function

OR Function

_O-- +0 C E _ E

_ @ B D O-- +O D F 0--_-_ F

NOT Function Equality Identity

Figure 31. AND, OR, and NOT Functions from the NOR

produces the opposite polarity for the same logical function, The

Equality function implies both logical and polarity inversion.

Figure 3Z presents the high speed versions of the NOR 1 and

NOR Z. The synthesis technique just described applies equally well.

NAND Gate

Figure 30 (b) presents the configuration of the multi-input,

one output NAND Gate which can be used to generate AND and OR

functions. The existence of this device can be justified by noting

that the generated AND function has a +(0 volt) output. The NOR

Gate which generated the AND function was true at the negative po-

tential. The OR function which is generated by the NAND element
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- 6v -iZv +6v

Output ut

Schematic

(a) NOR 1
-6v -1Zv+6v

I<-
_ Rz

Schematic

Ib) NOR Z

All resistors 1/4 w,
b

C1 10 pf RI

R3 27 K Ohm D

RZ 6.8 K " Q

Output /__ut

0 XLlJ "_
5 Mc.

Logical

Symbol

Output Input s

5 Mc.

Logical

Symbol

i 10%

I. 0 K Ohm

FD 8Z9

ZN711B

Figure 32. NOR Gates, 5 Mc./sec.
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is true when the output is at the negative potential. Thus the NAND

Gate has value when an AND function at the +voltage level or an OR

function at the negative potential is desired. Figure 33 illustrates

the NAND circuit performing the AND and O1% logical functions.

AND Function

01% Function

Figure 33. AND and OR Functions from the NAND

Pulse Generator

The pulse generator is a pulse output, transition input, digi-

tal device. If the transition voltage input always produces an out-

put, then the device is a pulse generator. If the pulse output is

controlled by an additional voltage level or levels, then the device

is a gated pulse generator. Figures 34, 35, and 36 present the

pulse generators and gated pulse generators and their logical sym-

bols. For all of the gated devices, a pulse output is achieved only

if the voltage levels on all level inputs are simultaneously 0 volts.

Nine Input Gated Pulse Generator

The function of the nine input gated pulse generator is to en-
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All re 3istors 1/4 w, _- 10% RZ 3.3 K Ohm

GZ Z0 pf R1 I. 0 K "

G 1 I0 pf D FD 829

R3 ZZ • K Ohm Q ZN711B

Figure 34. Gated Pulse Generators, 5 Mc./sec.
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Figure 35. Pulse Generators #3 and #5
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Figure 36. Pulse Generators #6 and #7
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able the summing of nine transition inputs. Figure 37 presents the

schematic and the logical symbol. For each transition input, there

is a corresponding level input which enables or inhibits the passage

of the transition by the application of a +(0 potential) or -(negative

potential) voltage, respectively.

Free Running Multivibrator

The free running multivibrator is a digital device which pos-

sesses no stable state. It functions as the master clock for the

operation of the other digital logic modules. Figure 38 presents

the FRMV. The frequency and asymmetry of the output signal are

achieved by adjusting the components, R3, R6, C4, and C5°

Crystal Oscillator

The crystal oscillator is another digital device which pos-

sesses no stable state. The function of this device is to provide the

measurement frequency_fm for the encoding of times tI and tZ. The

frequency of operation is determined by the selection of a plug-in

crystal. Figures 39 and 44 present the schematic and output sig-

nal of the crystal oscillator.

Schmitt T rigger

The Schmitt Trigger logic module functions as the interface

between the analog and digital signals in the transducer. Figure 40

presents the device, its logical symbol, and its input and output
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Figure 37. Nine Input Gated Pulse Generator



98

- IZv - IZv

Cl R2

, _ I

C5

C4

C3

C2

Cl

R8

R7

y Logical

R C6 Schematic Symbol

All resistors 1/4 w, ± 10%
Circuit is on Card #11

o. oi _f

0.0047 _f

0.0039 _f

390 pf

ZZ0

8Z

180 K

Z2 K

| l-i/

R5

R4

R3

pf R2

pf R1

Ohm D

" Q

I 18 K Ohm

6.8 K "

4.7 K "

3.3 K "

1.0 K "

330 "

IN456

2N4 04

Figure 38. Free Running Multivibrator
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Figure 40. Schmitt Trigger, 5 Mc. /sec.
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signal shapes. The input which is sensitive only to voltage level

has no effect on the -6 volt output until a -0.5 volts is sensed. At

that time the trigger circuit upsets, and the output voltage makes a

positive going transition to 0 volts. Later in time, when the input

voltage becomes less negative than -0.36 volts, the output returns

to its -6 volt level. The potentiometer, RZ, enables circuit adjust-

ment to achieve the -0.5 volt upset level. Fixed resistors R Z and

R 3 insure stability of the circuit by providing the 0. 14 volt hyster-

esis between the upset and recovery voltages.

Emitte r Follower

The operation of the emitter follower is characterized by its

name. The voltage on the output follows that on the input. Through

its use the simultaneous logical setting and resetting of a large num-

ber of flip-flops can be achieved by using the Base Resistor Set or

Reset terminal of each flip-flop. Figure 41 (a) presents two types

of emitter followers. Type #1 is utilized when the input signal may

be interrupted. For applications in which the emitter follower in-

put is permanently attached to a digital source, type #Z can be used.

Light Driver

The light driver circuit which is used in the transducer is

presented in Figure 41 (b). For illustration purposes, the indica-

tor light has been shown on the schematic. A negative voltage sig-

nal on the input will cause the light to turn on.



- IZv + 6v

• R2

Type #1 Type #Z
Schematics

-IZv

_put

b

a4

Lights:
Dialco #39-28-
1433 (Amber)

1431 (Red) - lZv

(

h

Outp____nput

Logical Symbol

(a) Emitter Follower

+ 6v

I R 5 Input

R3 -

r Schematic

Output

to light Input

Logical

Symbol

{b) Light Driver

All resistors 1/4 w,±10% P.Z 6.8 K Ohm

R5 47 K Ohm R1 680 "

R4 ZZ K " D IN456

R3 I0 K " Q ZN404

Figure 41. Emitter Follower and Light Driver
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Analog Devices

The analog modules of the digital transducer are those which

drive the sound projectors and which amplify the returning echos.

Ultrasonic Pulse Generator

The function of the ultrasonic pulse generator is to provide the

sound projector with a packet of pulses of the frequency fm and to

couple the returning echo, which is received by the sound projector,

to the amplifier. Figure 42 presents the schematic of both ultra-

sonic pulse generators, #1 and #Z.

The operation of each generator can be described by observ-

ing the sending and receiving of an ultrasonic signal. During send-

ing, the pulse packet and the bias voltage are applied to their res-

pective inputs. Transistor pairs Q3 and Q4' which form comple-

mentary emitter follower circuits, drive the sound projectors which

are coupled to terminals #9 and #13. The purpose of the bias volt-

age is to insure that the sound projectors receive the full voltage

swings of the pulse packet. This is accomplished by back biasing

the amplifier coupling diodes D 3. For echo receiving, diodes D 3

are forward biased, since the bias voltage is not present. Now a

voltage pulse created by the echo will be coupled through the for-

ward biased coupling diode into the respective amplifier.

Arnplifier

The amplification of the echo voltage pulse to a voltage poten-
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D4 -6v

-12v

RI

+6v

-I 2v
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+6v -IZv
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-6v

+6v -IZv
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-6v

O. TZ _t sec.

R6

!LI i50
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C2 0.05
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R8 6.8 K

R7 4.7 K
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R5 2. Z K

R4

_th R3

_f R2

_tf RI

pf D4

Ohm D3

" DE

" DI

" Q4

" Q3

" QZ

" QI

+6v

-iZv

+6v

R41 1 D31 RI_

I - U, P.G.

To projector []

+6v 

R4 __1 !Z _ R4

[]
0

o
To projector []

R7 +6v

R5
All resistors I/4w, ± 10%

except as noted.

Circuit is on Card # 13

{i.o ,< ohm
680 "

1470 "

I00 Ohm, I/Z w

IN38Z8A

IN456

IN60

FD8Z9

TI41 1

ZNZg06

2N33Z3

ZNTIIB

FIGURE 42. ULTRASONIC PULSE GENERATOR
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tial which will successfully operate the digital circuitry is accom-

plished in the three stage amplifier of Figure 43. The transformer

coupled, tuned stages produce an amplifier system with a frequency

band pass of approximately 1 Mc. and with a center frequency of

4. $ Mc. The amplifier power gain is Z6 dl_ and the frequency band

pass is illustrated in Figure 45. The 4.00 Mc./see. frequency

marker is located 1.5 Cmo to the left of center. The 5.00 Mc./sec.

marker is at the center of the illustration. Because of the diode

rectification on the output of the final stage, the characteristic am-

plifier curve is inverted.
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Horizontal:

0. 050 _ sec./cm.

Figure 44.

Vertical:

2 volts ]cm.

Oscillator Output

Horizontal:

See text
Ve r tical:

0.2 volts/cm.

Figure 4S. Amplifier Frequency Band Pass



APPENDIX B

BINARY FORWARD AND BACKWARD COUNTING

The purpose of this appendix is to present the logical imple-

mentation of forward and backward counting counters which operate

on positive going voltage transitions. The binary count sequences

for a 3 bit counter are presented in Table 7.

Forward Count Sequence
Decimal Binary

zZzlz0

ABC

0 000 0

1 0_1 7

Z o it!3o 6

3 011 5

4 100 4

5 i 01 3

6 110 2

7 I. i, I. 1

0 0)0)0 ) 0

Backward Count Sequence
Decimal Binary

zZzlzo

DEF

l_-lo

I i
11oj1

1 O0

0!1

010

O01

000

Table 7. Binary Count Sequences

For forward counting, the following is observed from the bi-

nary count sequence:

When a lower order bit goes from the set to the reset state,

108
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the next higher bit changes state.

Thus when binary bit C goes from set to reset for the count of 1 to

Z, binary bit B changes state. It was reset at count 1 and is set

at count Z. For the count change of 7 to 0, as bit C goes from the

set to the reset condition, bit B changes from the set to the reset

conditionl and A changes from the set to the reset condition.

By employing one of the flip-flop types of Appendix A, a for-

ward counter can be formed by connecting the 1 Output of each flip-

flop to the Trigger input of the next higher order flip-flop.

A B C

2_- 21 2_0

Figure 46. Binary Forward Counter

Each time flip-flop C goes from the set to the reset condition, a

rr_o__t_v_....... _,_, vnlt_g_......... transition_ occurs at its 1 Output. This tran-

sition causes flip-flop B to change state. Further application of

positive going voltage transitions to the T input of C will cause the

three flip-flops to count forward from 0 to 7.

For backward counting_ the following is observed from the bi-

nary count sequence:

When a lower order bit goes from the reset to the set state,

the next higher bit changes state,

By connecting the 0 Output of each flip-flop to the Trigger input of
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the next higher order flip-flop, a backward counter Can be formed

as Figure 47 illustrates.

D E F

T__ T Input
°_F

2 2 21 2 0

Figure 47. Binary Backward Counter

To show this is possible, one can consider that the count goes from

0 to 7. A positive going transition applied to F causes that flip-flop

to go from the reset to the set condition. The positive going tran-

sition which is produced at the 0 Output will cause flip-flop E to go

from reset to set. Finally, the transition from E will cause D to

change to the set state also. Thus the backward counter counts

from 000 to 111. Further transitions applied to the T input of F

will result in the complete backward count sequence.



APPENDIX C

ULTRASONIC PROJECTOR SPECIFICATION

This section presents the projector specifications furnished

by the manufacturer.

Projector Specifications

Ceramic crystal:

Thickness frequency:

Radial frequency:

Capacitance at thickness frequency:

Resistance at thickness frequency:

Physical dimensions (crystal)

Thickne s s:

Diamete r:

Barium titanate
Ceramelec 1006 mix

4.855 Mc./sec.

113.75 kc_/sec.

0. 0068 _f

3Z Ohms

0.0Z0 to 0.0ZZ inches

0.84 inches

Height:

Diameter:

Cable (15 feet):

Cost:

Manufacture r:

Physical dimensions (aluminum housing)

O. 75 inches

1.25 inches

RG58A/U

S25/Projector

Erie Technological

Products, Technical

Mate rials Division,

State College, Penn-
sylvania.
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